Visualization of gas–liquid mass transfer and wake structure of rising bubbles using pH-sensitive PLIF

نویسندگان

  • M. Stöhr
  • A. Khalili
چکیده

A planar laser-induced fluorescence (PLIF) technique for visualizing gas–liquid mass transfer and wake structure of rising gas bubbles is described. The method uses an aqueous solution of the pH-sensitive dye Naphthofluorescein and CO2 as a tracer gas. It features a high spatial resolution and frame rates of up to 500 Hz, providing the ability to capture cinematographic image sequences. By steering the laser beam with a set of two programmable scanning mirrors, sequences of three-dimensional LIF images can be recorded. The technique is applied to freely rising bubbles with diameters between 0.5 and 5 mm, which perform rectilinear, oscillatory or irregular motions. The resulting PLIF image sequences reveal the evolution of characteristic patterns in the near and far wake of the bubbles and prove the potential of the technique to provide new and detailed insights into the spatio-temporal dynamics of mass transfer of rising gas bubbles. The image sequences further allow the estimation of bubble size and rise velocity. The analysis of bubble rise velocities in the Naphthofluorescein solution indicates that surfactant-contaminated conditions are encountered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mass Transfer from Growing and Oscillating Rising Bubbles

Mass transfer in gas liquid systems depends on the contact between the entities in which the gas phase is dispersed into the liquid, the bubbles, and the surrounding liquid. Further knowledge of the hydrodynamics of the growing and rising bubbles under mass transfer conditions will help in the understanding of the mass transfer process in bubble columns and in the design of the equipment.

متن کامل

Study on Mass Transfer Enhancement in a Gas-Liquid System Using Nanomaterials

The main objective of this paper is to examine the effect of nanomaterials on mass transfer coefficient in bubble type absorption of carbon dioxide by experiment. The absorption process is carried out in a bubble column and in room temperature. Mass transfer coefficient, saturated concentration of CO2, and gas holdup are determined in this system. The kinds of nanomaterials, the concentrations ...

متن کامل

Mass Transfer Studies in Shallow Bubble Column Reactors

Mass transfer studies are carried out in a bubble column with an internal diameter of 14 cm and various static liquid heights. The mass transfer coefficient is evaluated by using an oxygen sorption method. A model considering the gas holdup flushing and the sensor response is used. The interfacial mass transfer area is determined according to the measured bubble size distribution. The liquid-si...

متن کامل

Kinetics of Propane Hydrate Formation in Agitated Reactor: A Mass Transfer Approach

Understanding the kinetics of gas hydrate formation is essential to model and predict the hydrate formation (or dissociation) process. In the present paper, we investigated the formation of pure propane gas hydrate as a former gas. In this regard, several experiments were conducted to measure the rate of hydrate formation under various pressures (410 to 510 kPa) and temperatures (274 K to 277 K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009